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Abstract: We describe state-based search approaches for determining routing for capacity and 
service activation as part of the connection management process for providing network services. 
These algorithms help to automate the process of route generation to provision end-to-end circuits 
through a transport network. The initial focus is on layer one with possible future applications to 
levels two and three. Whereas today this is mostly a manual task, these algorithms provide 
capabilities to automatically route, based on the configuration of existing transport and spare 
capacity, and rules to help engineers with a candidate list of pre-qualified routes. 
 
 
These algorithms are applied to an extract of the database of transport capacities and their port 
connectivities and spare capacities that are then intelligently used to generate feasible routes. 
Various types of constraints on feasible paths are modeled, including the rate (DS0, DS1, DS3, 
etc) requested, min/max number of x-connects, transport links or any set of facility types which 
can/must be used. The output of these algorithms is a list of “good” routes meeting all of the 
specified constraints. 
 
 
 
0. Introduction 
The Network Configuration Software System (NCON) is a distributed software system, intended 
to provide support for management of a company’s backbone and transport network. NCON 
manages the assignable equipment and facilities in a company’s network. NCON reduces the time, 
effort and errors associated with activating customer circuits, trunks, carrier systems and 
networks by eliminating manual record keeping and automating design and assignable tasks. 
NCON also supports service assurance processes by providing an easily accessible database of 
circuit, service and facility configurations. In addition, NCON helps network planners and 
engineers improve network capacity utilization by providing a centralized database that can be 
used to determine the status of network equipment and facilities, and how they are being used. 
 
NCON is part of the Telcordia Media Vantage product line. The Connection Manager (CM) Tier 
of NCON includes the CM Core, Service Adapter and Network Adapter. The CM Core 
implements a Generic Network Model (GNM) that can be used to model a broadband network in 
an abstract protocol neutral manner. The connection manager functions provide cost effective 
route selection and automated end-to-end connection provisioning. 
 
In this document, we describe several generic routing algorithms developed in the Applied 
Research Area to provide a set of good routes given a network model representation and user 
specified constraints. In particular, we describe state-based search approaches for determining 
capacity and service routings as part of the connection management process for providing 
network services. These algorithms help to automate the process of route generation to provision 
end-to-end circuits through a transport network consisting of add-drop multiplexors, terminal 



multiplexors, and cross connects. These algorithms provide capabilities to automatically route, 
based on the configuration of existing transport and spare capacity, and rules to help engineers 
with a candidate list of pre-qualified routes. 
 
Section 1 describes the problem and data. In Section 2, we describe the various routing 
algorithms. Section 3 describes the problem generators for testing these algorithms and the 
computational results are given in Section 4. Appendices A and B describe the standard input and 
output file formats, respectively, for the prototype software. 
 
 
1. Problem and Data Description 
 
1.1 The Data Description 
The inputs to the optimization procedure include a graph G = (V,E) consisting of a set of vertices 
or locations V, together with a set of edges or links E. This graph is an abstract representation of 
the underlying broadband network. Each vertex and edge may have certain attributes associated 
with them, such as a switch node or link on a SONET ring. These attributes are used as part of the 
user-input constraints to determine the set of feasible paths. Most of the constraints are all of the 
form: the count of nodes (or edges) of some particular type over the entire path lies within some 
range (i.e., between a specified minimum and maximum value, which allows for a zero minimum 
or an “infinite” maximum). We can also handle additional constraints, such as forcing a path to 
visit the hub nodes for the source and sink nodes. 
 
Additional inputs include the starting node (s) and the ending node (t) between which a 
connection is desired, together with the number of feasible paths desired. A list of feasible paths 
is generated to allow the system or the end user to select the most appropriate route (among the 
list of optimal paths) based on other preferences or constraints not modeled by our algorithms, or 
in case some of the generated paths are no longer viable given a very recent change in the state of 
the underlying network at that particular moment. 
 
1.2 The Problem Description 
The goal of our algorithms is to provide a list of good routes satisfying the constraints. We will 
describe several algorithms, each with different characteristics. The performance of each 
algorithm, in terms of running time or “quality” of paths produced differs depending on the size 
and structure of the underlying network, the number and “difficulty” of the constraints involved 
and the number of feasible paths desired. 
 
The ultimate performance of these algorithms will depend on the types of problems likely to be 
encountered in practice. Since data from an existing customer is not yet available, we have  tested 
these algorithms on data modeled after LATA-type networks, as well as randomlygenerated 
networks of varying size and complexity. 
 
We have produced a robust set of algorithms that seem to work well on a wide variety of large 
and complex networks as well as simpler cases. These algorithms are all contained in a single 
prototype research software package and use the same standard input and output formats. This 
allows easy future comparisons on real networks once this data becomes available. 
 
These algorithms are applied to an extract of the database of transport capacities and their port 
connectivities and spare capacities that are then intelligently used to generate feasible routes. 
 



Various types of constraints on feasible paths are modeled, including the rate (DS0, DS1, DS3, 
etc) requested, min/max number of x-connects, transport links or any set of facility types which 
can/must be used. The output of these algorithms is a list of “good” routes meeting all of the 
specified constraints. 
 
 
2. The Routing Algorithms 
 
2.1 Radial Search (RS) Algorithm 
 
The core of the radial search algorithm is a recursive backtracking search, similar to a depth first 
search. Given a source, destination, and a desired hop count, it looks for paths from the source to 
the destination whose length is the given hop count. These paths will be true paths; that is, they 
will not repeat nodes. If the desired hop count is the actual minimal hop count between source 
and destination, then any pair of generated paths will intersect only at some sub-path starting at 
the source, and at the destination. We do not necessarily generate all possible paths. 
 
The search proceeds by starting at a node (originally the source), looking at each of its neighbors, 
and recursively searching from each neighbor for which the proposed sub-path from the source to 
this neighbor (1) hasn't already visited this neighbor already, and (2) is shorter than every other 
sub-path found so far from the source to the neighbor. If we reach the destination, we output the 
constructed path, if it is of the correct length. If it is too short, any extension to the desired length 
will repeat the destination, so we back up. If we reach the desired hop count without reaching the 
destination, we back up. 
 
The overall radial search algorithm takes a source, a destination, a graph, a hop limit, and a 
desired number of paths, and tries to generate at least that number of paths. It repeats the core 
algorithm, with the desired hop count starting at one, and successively increasing, until we either 
have generated the desired number of paths (or more), or we reach the hop limit. No constraints 
beside the hop limit are enforced in the current implementation. Constraints would be enforced by 
post-processing, i.e., checking each path generated, and removing those that violate the 
constraints. 
 
Another, faster algorithm, called Quick Tree Radial Search (QTRC), to generate paths is based on 
the structure of the set of paths given by the radial search core algorithm when the desired hop 
count is the minimum possible hop count. This new algorithm first builds a breadth-first shortest 
path tree from the source node. It then generates, for each neighbor of the destination, a path 
consisting of the path in the breadth-first tree from the source to the neighbor, followed by the arc 
from the neighbor to the destination. This will generate, in time linear in the number of edges, all 
of the minimum-length paths that the radial search algorithm generated, plus possibly some other 
paths, up to two hops longer. 
 
It is important to note that no constraints, beside the hop limit, are enforced by either the RS or 
QTRS algorithms and that they only guarantee to produce a short path as opposed to a list of good 
paths. These algorithms are simply used as a benchmark against which the later algorithms that 
do incorporate multiple constraints and give a list of candidate paths are measured. 
 
 
2.2 Diverse Feasible Paths (DFP) Algorithm 
 



The input (of the network, the two nodes to be joined, the number of paths required, and the 
various restrictions and bounds) is in the standard format common to all three algorithms. (See 
Appendix A. Standard Input Format.) Also the output (i.e., the list of paths selected by the 
algorithm) is in the standard output format. (See Appendix B. Standard Output Format.) What 
needs to be described here is the algorithm itself. 
 
There are five main parts to the DFP algorithm: 
 
1. Preprocessing the bounds. 
2. Constructing a state graph, one where each node of the original network is represented by 
several nodes, one for each state that the original node may be in. 
3. Running a breadth-first search in the state graph, starting from the "sink". 
4. Using the distances to generate random paths in the state graph from source to sink. 
5. Selecting a diverse subset of the paths found. 
 
Now we describe each part in more detail. 
 
Part 1. Preprocessing the Bounds 
 
For each type of node there is a lower and upper bound on the number of times an acceptable path 
may use nodes of this type; and similarly each type of edge has an upper bound and a lower 
bound of zero. (Remark: so at the moment we are assuming that for each edge type there is 
nontrivial lower bound, and also that each node and edge has a unique type and so contributes to 
only one constraint. Both these restrictions could be lifted if necessary.) Let us define 
"statecount" to mean 1 plus the product, over all node types and edge types, of (upper bound + 1), 
or (lower bound + 1) if the upper bound is infinite. 
 
It is important for the time and space performance of the algorithm to keep statecount small, in 
the hundreds rather than in the millions; the space required by the algorithm is linear in 
statecount, and the running time is at least linear in statecount (rather more in practice). So, we 
first scan all the bounds to see if any can be safely disregarded. For instance, any upper bound 
that is bigger than the limit on total number of hops ("hoplim") can be treated as infinity and 
disregarded; also, any type of node or edge which does not actually appear in the network can be 
disregarded. Then, whatever lower and upper bounds remain are renumbered in a convenient 
order, grouping together bounds of the same form (i.e., "lower bound trivial", "upper bound 
trivial", or "both bounds nontrivial"). 
 
We then enumerate all possible "states" at a general node v, that is, all possible combinations of 
node and edge types that could have occurred in a path from the source to this node (e.g., 1 edge 
of type 1, 3 edges of type 2, 1 node of type 1, and 4 nodes of type 2) - assuming that if a node or 
edge type has an upper bound, then the path obeys that upper bound (so no numbers bigger than 
the upper bound are enumerated), while if it has a lower bound and no upper bound then no 
numbers bigger than the lower bound are enumerated (because as long as the lower bound has 
been satisfied, we do not need to record by how much it was exceeded). In this enumeration, we 
only count nodes and edges whose type has an associated nontrivial lower or upper bound. The 
number of states enumerated here is in fact equal to statecount (we also list one special state, used 
to represent that the path has violated some upper bound). We number all states from 0 to 
statecount - 1, in a convenient order. 
 
Next we construct a matrix representing transitions between states. (This is independent of the 
actual network, and determined just from knowledge of the constraints.) For every edgetype x and 



every nodetype y, and every state s, we wish to calculate the following: suppose an edge e of type 
x has nodes u and v, and v has type y, and a path from the source has arrived at u in state s. Now 
this path is to be extended to v via the edge e; what will be its state when it arrives at v? The path 
may become illegal if some bound becomes violated by the addition of e and v, and otherwise the 
new state will be one of the possible states we computed earlier (possibly the same as s). Let us 
call this resultant state "transition [x][y][s]". 
 
By means of this device we will not need to read through the list of constraints or to check if any 
are violated, during the breadth-first search part of the algorithm, which is where the performance 
is critical. 
 
 
Part 2. Constructing the State Graph 
 
For each node of the network, we take several copies of it (in fact, statecount + 1 copies), one for 
each possible state of a path from the source arriving at it. For our purposes here, let us call the 
copies of node v (v,0),..,(v, statecount). To keep the space requirements down, we do NOT take 
corresponding copies of each edge; we just read edges off the original network when we need 
them. However, for the purposes of this description, let us imagine that for each edge uv of the 
network, and every state s, there is an edge of the state graph from (u, s) to (v, t), where t is the 
state transition [x][y][s] (where uv has edgetype x and v has nodetype y). It should be stressed 
that the state graph is a directed graph, although (in the current implementation) the input graph is 
undirected. 
 
 
Part 3. Finding a Breadth-First Tree in the State Graph 
 
If a path from the source arrives at the sink, and its length is at most hoplim, then whether this is 
considered a legal path is determined by its state. We list all the states that correspond to legal 
paths; let us call them "sinkstates". These are represented by some of the copies of the sink in the 
state graph. 
 
For each node (v, s) of the state graph we wish to compute the minimum length of a path Q in the 
network from v to the sink such that, if P were some hypothetical path from the source to v in the 
network which arrived at v in state s, then P + Q would be a legal path if it were not too long. In 
other words, Q is to be a path from v to the sink in the network, achieving the "complement" of 
state s; for any nodetype which, according to the state s, have not yet been used enough, the path 
Q must pass through at least the missing number of nodes with this nodetype, and similarly for 
nodetypes and edgetypes with upper bounds. This is equivalent to asking for the shortest directed 
path in the state graph from (v,s) to a sinkstate. (We are using the term "path" loosely here - it is 
permitted to pass through a node or edge more than once.) 
 
So, we wish to find the minimum distance from (v,s) to a sinkstate in the state graph, for all pairs 
(v,s). There are several ways to do this. After a good deal of experiment we selected one designed 
to take advantage of two special features of the input network, namely that the number of nodes 
remains fairly small, in the thousands (although the number of edges can be in the hundreds of 
thousands), and the hoplim is small (typically less than 20). 
 
Recursively for i = 1,.., hoplim, we find all the pairs (v,s) whose minimum distance to the 
sinkstates is i. To do so, we preserve two overlapping sets of data. At the start of the ith iteration, 
for each node v of the network, we have a list (L(v) say) of all the states s such that the distance 



from (v,s) to the sinkstates is at least i; and for every pair (v,s) a toggle which (for the pairs (v,s) 
with distance at least i) indicates whether the distance from (v,s) to sinkstates equals i or not. The 
iteration has two parts. First, for each v we scan through L(v), and divide the list into two shorter 
lists, depending whether (v,s) is toggled or not (call the first list T(v); the second will become the 
new L(v)). Then set all toggles to NULL; and for each v, and for each member (v,s) of T(v) we 
run through all neighbours of (v,s) and toggle them. 
 
This procedure has the advantage over the usual breadth-first tree algorithm that it avoids asking, 
for each EDGE from (u,s) to (v,t), whether we already know the best path for (v,t); and the 
disadvantage that we have to scan through the list L(v) for each node v, once for each value of i. 
In practice this appears to yield a net reduction in running time. 
 
 
Part 4. Using the distances 
 
Now we have found the minimum distance from (v,s) to a sinkstate, for each node (v,s) of the 
state graph. Next we use this to randomly generate legal paths from source to sink. A first attempt 
to do so might be to generate a path starting at the source (in the state graph) and grow it 
randomly somehow in the state graph, making sure at each step that the number of hops needed to 
complete this to a legal path to the sink (which we computed in Part 3) will yield a path from 
source to sink of total length at most hoplim. But this does not work well; the path tends to walk 
randomly around at the start with no urge to go in any direction, until the hoplim bound bites, and 
then it takes off along a shortest path route to the sink. This is unsatisfactory for several reasons - 
the paths we generate are too wild at the source and too tame at the sink, and also the paths tend 
to have many self-intersections, even in the state graph. 
 
But there is a simple trick to make it work better. Let n be the length of the shortest legal 
path from source to sink. (This was one of the things we computed in the previous part.) Choose a 
number, say d, between n and hoplim, and let us look for a random path of length at most d. 
Generate a random "waste function" f. (We take f(0) = 0 and f(d) = d - n, and fill in the 
intermediate values of f with a random increasing step function.) Now grow the random path as 
before, but being more careful not to waste steps in the early part of the path - we insist that at the 
(i+1)th node of the path we must not have wasted more than f(i) steps, that is, our distance to the 
sink must have been reduced by at least i - f(i). This is only a heuristic, but it seems to work quite 
well in practice. 
 
Let us explain the path-growing procedure. We are given d and the waste function f, and suppose 
we have grown a partial path P in the state graph, starting from the source but not yet having 
reached a sinkstate. Suppose also that the last node of P ((u,s) say) has just been added to it, and 
P currently has i-1 edges. We randomly order the edges of the network incident with u (unless 
they have already been reordered in growing this path), and try all these edges in order until we 
find one, uv say, so that if (v,t) denotes the corresponding neighbour of (u,s) in the state graph, 
then: (a) t does represent a legal state (not the extra state meaning violation) (b) (v,t) is not 
currently in the path P (we permit (v,t’) to be in P for t’ different from t), and (c) the length of the 
shortest path in the state graph from (v,t) to a sinkstate is at most d - i + f(i). If we find such an 
edge uv we add it to P and repeat. If there is no such edge then we discard the final node of P, 
reduce i by 1, and try the next neighbour of what is now the last node of P. When we reach a 
sinkstate the process terminates. 
 
This eventually will find a legal path from source to sink of length at most d, if there is one. The 
above is called repeatedly starting with d = n, and after "ntries" calls with no good new paths 



found we increase d by 1, and repeat until d exceeds hoplim. (ntries is a parameter set by the user: 
ntries = 500 is reasonable.) 
 
It remains to explain what is a "good new path" - that is the next part. 
 
 
Part 5. Selecting a diverse subset of the paths found 
 
Part 4 above provides a fast subroutine, which will generate random legal paths in the network 
from source to sink, shorter paths first. We need to make a good selection of some of these to 
output. At any step we will keep a list of the best 10 (say - this parameter is set by the user) paths 
found so far. Now we are presented with another legal path. 
 
First, we check it for minimality - that if it passes through some node more than once, then 
shortcutting does not give a legal path. (If it is not minimal we abandon it and wait for another 
proposal from part 4). 
 
Next we check that this path is not already in our top ten. (It could be; this is a random process, 
there is no checking for repetition until this point.) 
 
If not, we try replacing each member of our top ten by it, in turn, and check whether the new set 
of 10 paths we get is more diverse than the old set. If so we make the replacement, and otherwise 
retain the old set. 
 
To measure the diversity of a set of 10 paths, we measure, for each of them, its maximum 
"closeness" to any other member of the set, and add the answers; the larger the total the smaller 
the diversity. The closeness of two paths means the sum of (a) "nodecost" times the sum of the 
lengths of the two paths (nodecost is a parameter set by the user - high nodecost, e.g. nodecost = 
20, will give a set of paths which tend to be shorter but may have more nodes and edges in 
common, while nodecost = 1 will do the reverse) (b) 3 times the number of nodes they have in 
common (c) the number of edges they have in common. 
 
 
2.3 Random Feasible Paths (RFP) Algorithm 
 
Input and output for the algorithm are in the standard formats, specifying an undirected graph G 
with a type for each node and for each arc, the source s and destination t, the number of desired 
paths, and constraints on allowable paths. 
 
Constraints and State Graphs. 
 
The constraints are all of the form: the count of nodes or edges of some particular type over a 
path lies in some range. The standard input format requires that no node or edge be of more than 
one type. The algorithm itself as coded allows for an edge to have a vector of attributes, and 
allows constraints such as: the count of edges whose third attribute is four should be between one 
and eight. A hop limit is also of this form. 
 
We transform the input graph G=(V,E) into a directed state graph G’=(V’,E’), where each node 
v’ in V’ corresponds to a node v in V, together with for each constraint, a count of objects of the 
specified type. The counts can range from zero up to the maximum allowed in the constraint. If a 
constraint has no maximum, or if the maximum equals or exceeds the maximum of another 



constraint that counts a superset of the objects of the original constraints, we can stop counting as 
soon as we hit the minimum. (With the standard input format for constraints, this can only happen 
if the other constraint is the hop limit.) Note that the hop count is included in the state information. 
 
An edge e’=(u’,v’) in E’ exists if e={u,v} is in E, and if traversing e from u to v would increase 
the counts in u’ to the counts in v’. The counts in v’ must not exceed the constraints. Counts for 
constraints that have no maximums need not increase once their minimums are reached. 
 
We are only concerned with accessible nodes -- nodes which can be reach from s’=(s,0,...,0) 
using edges in E’. 
 
A path P’ in G’, from s’=(s,0,...,0) to some node (t,c1,...,ck) where c1, ..., ck are feasible counts, 
corresponds (by projecting the individual nodes and edges) to an s-t path P in G that satisfies the 
constraints, except that different edges in P’ may project to the same edge, giving repeated edges. 
 
 
The RFP Algorithm 
 
The RFP algorithm consists of three parts: 
 
1. Pruning the original graph. 
2. Searching the state graph, and counting the number of feasible ways to get to each state from 
the source. 
3. Generating random feasible paths from source to the destination. 
 
We will describe these three parts out of order. 
 
Searching the State Graph 
 
We build a representation of the part of the state graph accessible from s’ by a breadth-first search, 
using the description of the original graph G and the constraints to determine the edges of 
G’. We also record how many different feasible ways there are to get from s’ to each node. When 
we try traversing an edge e’=(u’,v’), we run through each constraint to compute the counts for v’, 
and verify that v’ is feasible. We add the number of ways to get to u’ to the number of ways to get 
to v’. We also add e’ to a list of usable incoming links for v’. Because this is a breadth-first search, 
and because the state information includes the hop count, we visit all nodes at k hops from the 
source before we visit any node at k+1 hops from the source. This means the count of ways to get 
to u’ will no longer change by the time we add it into the number of ways to get to v’. 
 
 
Pruning the Original Graph 
 
The number of states can be exponential in the number of constraints. To reduce the work that the 
search has to do, we prune the original graph, removing edges that we can show do not lie in 
feasible s-t paths for some subset of the constraints. 
 
For a growing subset of the constraints, starting with just the hop limit we do the following. We 
search the accessible region of the state graph, by breadth-first search. From every feasible 
destination state we do a depth-first search backwards in this accessible region, marking each link 
of the original graph that we traverse. We then delete from the original graph the unmarked edges. 



We add in the next constraint to our set of constraints and repeat, until we have pruned for all but 
the last of the constraints. 
 
 
Generating Random Feasible Paths 
 
We generate feasible paths randomly, so that each feasible path is equally likely to be generated. 
We generate the specified number of feasible paths by repeating the following procedure: 
 
First, we add up the numbers of ways to get to each feasible state of the destination, obtaining the 
total number np of feasible paths. We generate a pseudo-random integer z from 1 to np. We 
translate this into a path working backwards, starting with the destination. We run through the 
destination states in some order, and pick the state so that the earlier states total fewer than z 
paths, but with this state totals at least z paths. We now subtract off the total of earlier states and 
repeat the following, until we reach the source s’. 
 
The current value of z should range from 1 to the number of feasible paths that reach the current 
state. Run through the list of usable incoming links at the current state, and sum up the number of 
ways to reach the states at the other side of these incoming links. When the partial sum first 
reaches or exceeds z, choose that incoming link, prepend it to the path constructed so far, and 
subtract the previous partial sum from z. 
 
This process tends to give relatively long paths, because there are usually more paths close to the 
hop limit than there are near the minimum hop count. This effect is worsened by the flaw that the 
algorithm allows repeated nodes and edges. It might be advisable to process the resulting paths to 
remove non-essential cycles, that is, cycles that are not required to satisfy minimum constraints. 
 
 
3. Problem Generators 
 
We use two types of randomly generated problems, and here the two generators are described. 
 
Problem Generator #1 
 
The user specifies 
(a) the number of nodes and edges desired, 
(b) the number of nontrivial edge-types and nontrivial node-types (there is automatically also a 
trivial edge- and node-type), 
(c) what percentages of nodes and edges should have trivial type, and 
(d) a number d. (d will be smaller than, but roughly equal to, the minimum distance from source 
to sink in the network.) 
 
Let n be the number of nodes, and let c = n/d, rounded down. The program generates nodes 
numbered from 1 to n; and then repeatedly chooses a pair u,v of numbers between 1 and n, so that 
0 < |u-v| <= c, uniformly at random, and adds the edge uv. This is repeated until the number of 
edges is as specified. (There is no check for parallel edges.) 
 
Then, again randomly, types are assigned to the nodes; the probability of getting the trivial type 0 
is as specified by the user, and the other types all have equal probability. The same procedure is 
repeated for edge types. Nodes 1 and n get trivial type 0. 



 
This procedure allows us to generate networks of varying size (in terms of locations and links), 
varying “width” (i.e., distance from source to sink), and varying number of constraints. This 
allows us to exercise the algorithms and evaluate their performance across a broad range of 
problem types. 
 
Problem Generator #2: 
 
This problem generator was designed to produce networks, which exhibit some local "geography". 
It is considerably more complicated (and slower) than the first generator described above. The 
process breaks into three stages: 
 
Stage 1: The user specifies a width and height for the display; let R be a rectangle with the 
specified dimensions. The user specifies a number of centres, and a minimum distance between 
centres. The program chooses points from R one at a time, retaining a point (and calling it a 
"centre") if its euclidean distance from all the previously selected centres is at least the minimum 
distance. This process continues until the specified number of centres has been chosen or for 
1000 tries, whichever is first. 
 
Stage 2: The user specifies the number of nodes n, and a number called radius, which should be 
less than half the minimum distance input previously. The program randomly selects points from 
R, and checks whether its distance from some centre is at most the radius. If so the point is 
retained, and called a node of the graph (and the centre it is close to is called its centre). This is 
repeated until the required number of nodes is obtained. One exception: in order to ensure that the 
source and sink are reasonably far apart, we choose the two centres that are furthest apart, and 
make sure that the first node is chosen from one of these two centres, and the last node from the 
other. 
 
This results in a selection of nodes, each with a position in R, and falling into groups, one group 
around each centre. Next we select the edges. There will be two kinds of edges, long ones 
(between nodes in distinct groups) and short ones (between nodes in the same group). 
 
Stage 3: The user specifies how many short edges are wanted. (The program in general may find 
considerable fewer than specified.) The user species the number of nontrivial short edge types 
(there is automatically also a trivial type). For each type t in turn, the program then randomly 
(uniformly) selects a pair u,v of distinct nodes, and checks that u and v belong to the same group, 
and have not yet been joined by an edge, and that the straight line in R between u and v will not 
cross any other edge with type t; and if all these tests are satisfied, it adds the edge uv to the 
network with type t. This is repeated until the number of edges with type t is correct (equal to the 
total number of short edges divided by the number of short edge types) or for 10000 tries, 
whichever is first. 
 
Stage 4: For each group of nodes, the program checks that the subgraph induced on the group is 
connected, and if not adds more short edges joining nodes in different components of this group 
until it becomes connected (again, trying to distribute types equally, and insisting that no two 
edges of the same type can cross). It continues until it succeeds or for 10000 tries. 
 
Stage 5: Now we repeat stage 3 for long edges. 
 
Stage 6: We check if the whole network is connected, and if not try to add more long edges 
joining nodes in different components until it becomes connected, as usual keeping the number of 



long edges of each type the same as far as possible, and making sure that no two edges of the 
same type cross. 
 
Stage 7: So far, all nodes and edges have nontrivial type. Now the user specifies what proportion 
of the nodes and of the edges should have trivial type, we randomly select a set of the edges of 
the specified size, and change their types to trivial, and repeat for the nodes. The first and last 
node gets trivial type. 
 
4. Computational Results 
In this section, we examine the suitability of our algorithm for solving problems that are likely to 
arise in practice. 
 
We tested the DFP algorithm (see Section2.2) and the RFP algorithm (see Section 2.3) on 
problems generated by our problem generators (see Section3). The networks have the following 
characteristics: 
 
Problem  Nodes  Edges   Generator 
Prob1   200  400   1 
Prob2   1000  3000   1 
Prob3   3000  30000   1 
Prob4   5000  100000  1 
Prob5   200  422   2 
Prob6   1000  2484   2 
Prob7   3000  6741   2 
 
Edges were of five types and nodes of three types, including type zero, which cannot appear in 
bounds (other than the hop limit). For each graph we requested 10 paths from the first node to the 
last node, subject to a hop limit of 20. We used three different sets of edge and node bounds. 
"limits0" had no node or edge bounds beyond the hop limit. "limits1" forbade edges of type two 
and three altogether, required exactly one node of type one, and restricted the other edge types. 
"limits2" restricted all edge types, and required exactly one node of type one and exactly one 
node of type two. 
 
We tested the algorithms on Applied Research public compute server "wind", at this time a Sun 
S670 with a number of other users. The time reported is user CPU time in seconds. The space is 
the "average amount of unshared data space used in Kilobytes", reported by the csh "time" 
command. The average length (in edges) of the ten paths generated is given next. The last column 
is the average, over all ordered pairs of paths, of the fraction of edges in the first path that lie in 
the second path. 



 
The results for the DFP algorithm (see Section 2.2) are contained in the following table. 
 
 
Prob  Constraints Time Space  Avg Path Length Avg Path Overlap 
                (secs) (bytes) 

 
Prob1  Limits0  0.1  268K   7.9    40.46% 
Prob1  Limits1  0.4  456K   10.8    37.86% 
Prob1  Limits2  0.9  964K   12.0    32.31% 
Prob2  Limits0  0.4  548K   11.0    18.18% 
Prob2  Limits1  1.8  1400K   14.0    29.78% 
Prob2  Limits2  3.0  3588K   16.7    27.72% 
Prob3  Limits0  3.0  3056K   11.0    13.94% 
Prob3  Limits1  8.1  5460K   15.6    22.94% 
Prob3 Limits2  13.7  11676K  16.6    17.78% 
Prob4  Limits0  9.3  9220K   11.0    17.78% 
Prob4  Limits1  18.9  12948K  14.9    13.48% 
Prob4  Limits2  29.0  22860K  17.10    34.41% 
Prob5  Limits0  0.2  304K   7.6    10.58% 
Prob5  Limits1  0.3  472K   10.8    30.27% 
Prob5  Limits2  0.8  960K   9.0    19.44% 
Prob6  Limits0  0.4  496K   5.9    35.67% 
Prob6  Limits1  1.0  1172K   9.1    17.22% 
Prob6  Limits2  2.4  3232K   8.1    37.48% 
Prob7  Limits0  1.3  892K   7.2    14.09% 
Prob7  Limits1  3.7  3112K   9.3    40.97% 
Prob7  Limits2  7.9  9324K   14.7    23.42% 
 



 
The results for RFP algorithm (see Section 2.3) are contained in the following table. 
 
Prob  Constraints Time Space  Avg Path Length Avg Path Overlap 
                (secs) (bytes) 
 
Prob1  Limits0  0.3  648K   19.7    17.76% 
Prob1  Limits1  8.1  3676K   19.6    26.65% 
Prob1  Limits2  23.6  9548K   19.0    49.43% 
Prob2  Limits0  2.5  2680K   20.0    7.22% 
Prob2  Limits1  61.1  16324K  19.7    36.53% 
Prob2  Limits2  120.8  29492K  19.9    36.23% 
Prob3  Limits0  38.5  20764K  18.2    2.09% 
Prob3  Limits1  764.4  89140K  19.9    19.50% 
Prob3  Limits2  1294.3  37744K  19.9    12.51% 
Prob4  Limits0  174.8  63660K  18.5    1.46% 
Prob4  Limits1  3465.5  *****K  19.9    11.29% 
Prob4  Limits2  1523.7  *****K  19.7    44.09% 
Prob5  Limits0  0.3  692K   19.9    10.72% 
Prob5  Limits1  8.5  3820K   19.0    28.87% 
Prob5  Limits2  22.4  8860K   19.0    29.52% 
Prob6  Limits0  2.8  2884K   20.0    6.33% 
Prob6  Limits1  84.4  21164K  19.2    12.71% 
Prob6  Limits2  197.1  45948K  19.0    17.59% 
Prob7  Limits0  10.7  7632K   19.9    1.56% 
Prob7  Limits1  112.0  29220K  19.1    44.06% 
Prob7  Limits2  169.1  33764K  19.5    18.78% 
 
The space number for prob4, limits1 was negative, and thus certainly an overflowed variable. 
The space number for prob4, limits2 seemed anomalously small, and may have also been an 
overflow. 



 
The results for the RS and QTRS algorithms (see Section 2.1) are contained in the following table. 
It is important to note that no constraints, beside the hop limit, are enforced by either the 
RS or QTRS algorithms and that they only guarantee to produce a short path as opposed to a list 
of good paths. These algorithms are simply used as a benchmark against which the later 
algorithms that do incorporate multiple constraints and give a list of candidate paths are measured. 
Hence, these results are only for unconstrained (Limit0) versions of the problems.  
 
 
Problem Method Time Space No. Paths  Avg Path Length Avg Path Overlap 

(secs) (bytes) 
 
Prob1  RS  0.0  200K  17   8.35    40.71 
Prob1  QTRS  0.0  156K  1   7    *** 
Prob2  RS  0.2  324K  13   11    20.75 
Prob2  QTRC  0.0  284K  4 1  1.5    25.88 
Prob3  RS  354.4  1684K  523   11    20.60 
Prob3  QTRS  1.6  1100K  8   11.62    12.07 
Prob4  RS  82548.3  844K  16  1116 11    *** 
Prob4  QTRS  8.6  3236K  15   11.33    8.19 
Prob5  RS  0.0  180K  11   7.90    21.32 
Prob5  QTRS  0.0  196K  4   7.5    27.38 
Prob6  RS  0.1  292K  14   6.71    35.67 
Prob6  QTRS  0.0  272K  16   6.88    73.21 
Prob7  RS  0.5  484K  15   7.4    21.27 
Prob7  QTRS  0.2  416K  20   8.25    29.34 
 
Two table entries contain asterisks since the QTRS algorithm for Problem 1 only generated one path so 
there is no comparison to be made and the RS algorithms for Problem 4 generated too many paths to 
compare. 
 
We note that both the RS and QTRS algorithms are very fast and generate paths with short hops. However, 
the number of paths generated by the QTRS algorithm is generally quite small. 
 
In addition, since constraints are not taken into account and since these algorithms will not generate many 
paths beyond those with nearly minimum hop values, that these algorithms are not useful when there are 
constraints, as we shall see next. 
 
We ran the RS algorithm and allowed it to generate all possible paths that it could find to see now many 
would be feasible. This is summarized in the following table with the conclusion being that when there are 
constraints, it is very, very unlikely that a feasible path will be found. Naturally, there are many possible 
paths (including feasible ones) which the RS algorithm simply did not find. (The same would be true for 
the QTRS algorithm as well.) 
 
 
Problem  Time (seconds)  No. Paths  No. Feasible No. Feasible 
      (Limits1) (Limits2) 
Prob1   0.1   51   0   0 
Prob2   1.9   291   0   0 
Prob3   4215.5   51134   0   0 
Prob4   ***   ***   ***   *** 
Prob5   0.2   54  0   1 
Prob6   1.3   78   0   0 
Prob7   5.9   93   1   0 
 
 



5. Concluding Remarks 
 
We have presented various algorithms to help automate the process of route generation to 
provision end-to-end circuits through a transport network. The main feature of these algorithms is 
the ability to generate a list of good paths all satisfying certain constraints. We have tested these 
algorithms on small-medium networks with 200 nodes and 400 edges, to much larger networks 
with 3000 nodes and 6741 edges. We have also included up to five edge constraints and three 
node constraints. 
 
For problems with no constraints, the RS algorithm quickly generates a list of paths with 
minimum or near-minimum hop length; it does not take into account diversity, however. The 
QTRS algorithm does not allow specifying the number of paths to generate and often the number 
of paths generated is quite small. In either case, when there are constraints, even generating a 
huge number of paths does not yield any path that satisfies the constraints. The RS algorithms 
could be used if a list of paths with short hop lengths is desired and there are no other 
constraints or costs associated with the problem. However, even in this case, the DFP 
algorithm is comparable in time and better in route diversity and probably should be used 
as an alternative. 
 
For problems with several constraints, the DFP and RFP algorithms find a set of paths that are 
“diverse” as well as relatively short. However, the latter algorithms require considerably more 
time and space to be able to handle these constraints and to find diverse paths. (The DFP 
algorithm required at most 29 seconds of CPU time and 22Mb of space, while the RFP algorithm 
occasionally required much more time and space for highly constrained problems. See Section 4 
for more details.) 
 
So for problems with several constraints, the DFP algorithm quickly produces a list of 
relatively short feasible paths with the additional benefit of added diversity and is 
preferable to the RS, QTRS and RFP algorithms. We have successfully solved the problem 
originally posed in the NCON routing algorithms project document. However, it remains to be 
seen what types of problems and constraints arise within the real NCON systems and based on 
inputs from real customers. Also, it remains to be seen whether this approach can be incorporated 
into the NCON system in an efficient and effective manner. 
 



 
Appendix A. Standard Input Format 
 
The algorithms all use the same input format, and in this section it is described. There must be 
two input files, which can be called anything but for our purposes here will be called "graphfile" 
and "limitsfile". 
 
In graphfile, the network is described, together with the type of each node and each edge. In 
limitsfile, the demands and constraints are specified. 
 
Here is a sample graphfile: 
 
4 5 
1 0 128.040531 28.922303 
2 0 127.727730 16.768486 
3 1 140.510495 19.950633 
4 0 106.973539 175.129595 
 
1 2 1 0 
2 1 3 1 
3 1 4 1 
4 2 4 0 
5 2 3 0 
 
There must be a carriage return at the end of every line. The first line specifies the total number of 
nodes and of edges (4 and 5 in this case). The second line is blank. The next set of lines (one for 
each node) have four entries: 
(a) the number of the node (nodes must be numbered consecutively from 1 up to the number of 
nodes, so the ith node line must start with the number i), 
(b) the type of the node (any nonnegative integer < 100), and 
(c) two doubles, giving the coordinates of the position of the node in the x,y-plane, for use with a 
graphical interface. 
 
Then there is a blank line, and then one line for each edge. The line for edge j contains again four 
entries: 
(a) the number of the edge (the edge described in line j must have number j), 
(b) the numbers of the two ends of the edge 
(c) the type of the edge (any nonnegative integer < 100). 



 
Here is a sample limitsfile: 
 
source 1 
sink -1 
nwanted 10 
hoplim 20 
 
2 edgebounds 
1 1 
2 3 
 
2 nodebounds 
1 0 2 
2 1 100 
 
There must be a carriage return at the end of every line. The first two lines give the numbers of 
the two nodes that we are to find paths between; they should read "source a" and "sink b", where 
a and b are integers. The number a must be the number of a node. The number b may be the 
number of a node, or it may be negative, when it means the node with number n + b + 1, where n 
is the total number of nodes. 
 
The third line reads "nwanted w", where w is a positive integer; w will be the total number of 
paths in the set of paths output by the algorithm. 
 
The fourth line reads "hoplim h", where h is a nonnegative integer; this instructs the algorithm 
only to consider paths with at most h edges. 
 
Then there is a blank line, and a line "p edgebounds", where p is a nonnegative integer, the 
number of edge types for which there is a constraint. 
 
Then there are p lines, one for each edgebound. Each line must be of the form "x y" where x is a 
positive integer (< 100) and y is a nonnegative integer. This line will enforce that the selected 
paths will each have at most y edges with type x. (So the example above requires that every path 
has at most 1 edge of type 1 and at most 3 edges of type 2.) Note that these edgebound lines 
cannot involve edgetype 0, although there may be edges with type 0; such edges are "free". Also, 
note that we do not permit any lower bound on the number of times a path uses edges of a given 
type, only an upper bound. 
 
Then there is a blank line, and a line "q nodebounds", where q is a nonnegative integer, the 
number of node types for which there is a constraint. Then there are q lines, one for each node 
constraint. Each node constraint line is of the form "x y z", where x is a positive integer (< 100), 
and y and z are both nonnegative integers with y no bigger than z. This line will enforce that 
every selected path has at least y and at most z nodes with type x. Once again, no constraint can 
involve nodes with type 0; such nodes are free. The example above requires that every path 
contains at most two nodes of type 1, and at least one node of type 2. (The other two constraints 
are trivial, since hoplim = 20 makes the upper bound of 100 effectively infinite.)



Appendix B. Standard Output Format 
This describes the common format of the output from all the algorithms. Here is a sample output 
file: 
 
5 
path 1 length 5 1 1102 982 437 202 1032 65 265 519 2182 1000 
path 2 length 6 1 161 955 196 565 1355 327 395 132 872 519 2182 1000 
path 3 length 6 1 161 955 712 574 1934 202 1032 65 265 519 2182 1000 
path 4 length 6 1 1102 982 427 305 1516 238 834 65 265 519 2182 1000 
path 5 length 6 1 1102 982 1558 923 613 49 245 132 872 519 2182 1000 
 
The first line consists of one nonnegative integer, p say, which will be the number of paths 
described in the file. Then there follow p more lines, one for each path. The line describing the ith 
path will start "path i length j" where j is the number of edges in the path. Then there follow 2j+1 
integers, which are the numbers of the nodes and edges in the path as it is traversed from source 
to sink. (So in the example above, the nodes of path 1 in order, starting from the source, are: 1, 
982, 202, 65, 519, 1000; and its first edge has number 1102 and joins nodes 1 and 982.) 
 


